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SUMMARY 

Experimental data of oscillating shock waves experienced by space vehicles are 
examined to determine whether shocks oscillate in a random or discrete manner. 
Since there i s  evidence to suggest that shocks can oscillate at discrete frequencies, 
this was chosen as the principal theoretical model Theory i s  formulated for the 
response of a simply-supported panel to sinusoidally oscillating shocks and to shocks 
moving at constant speed. Some analysis of the theory i s  made and it i s  found that 
f i r s t  mode dynamic amplification factors as high as fifty could be experienced by 
a panel for a shock oscillating about the panel center, over the full span and at  
the panel resonant frequency, for typical panel damping. 

... 
1 1 1  
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1 .O INTRODUCTION I 

As a typical space vehicle accelerates through the atmosphere i t  i s  subjected to fluctu- 
ating pressure loads on the vehicle skin due to a variety of aerodynamic mechanisms. 
These pressure loadings can be so severe that they have caused the loss of some vehicles 
(Reference 1). Thus, it i s  imperative that the loading which a prototype vehicle w i l l  
experience and the effects upon the structure must be estimated before i t s  first flight. 
Figure 1 (extracted trom Reference 2) shows the relative importance of the fluctuating 
pressure loadings experienced by a typical launch vehicle. It i s  seen that, except during 
the init ial  10 or 20 seconds of flight when structural loading caused by the noise from the 
rocket exhaust mixing with the atmosphere predominates, the dominant loading i s  caused 
by  pressure fluctuations due to the turbulent boundary layer and separated and wake flows 
which are often coupled with oscillating shock waves. 

Although these latter aerodynamic phenomena are coupled together, calculating the 
response of the missile structure to such a combined loading would be very diff icult. 
R e  normal procedure i s  to assume that each loading i s  uncoupled. R e  structural 
response to each source of excitation i s  then calculated and the total response found 
by a summation of responses. Th is  affords a considerable simplification in the math- 
ematics. In this report, only the response of structure to traveling shocks i s  considered. 

Experimental evidence shows that during supersonic flight of a missile, separated flow 
and shock waves occur at the interstage farings where the streun lines encounter local 
compression. During the subsonic flight regime the separated flow and shock waves 
form at the shoulders of the vehicle where local compression i s  encountered by the flow. 
As the vehicle accelerates, these shock waves tend to oscillate and simultaneously run 
down the vehicle from one flare or shoulder to the next. Thus, the response of vehicle 
structure, to both running and oscillating shock waves, i s  of interest. 

In Section 2 of this report, available experimental evidence i s  examined to decide the 
manner in  which shock waves oscillate. In Section 3.1, theory for the response of a 
panel to a time varying force i s  formulated. Section 3.2 deals with panel response to 
grazing incidence moving shocks and in  Section 3.3,  theory i s  formulated for panel re- 
sponse to a grazing incidence shock moving with constant velocity. In Section 3.4, the 
theory i s  extended to cover the case of panel response to grazing incidence sinusoidally 
oscillating shocks, where the amplitude of shock oscillation i s  restricted. Section 4.0 of 
this report deals with computations made of the analysis of Section 3.4 

Equation (1) below gives the ratio of  static pressures across a shock front in terms of the 

1 '  Mach number of the approaching flow, M 

I 
I 

p2 - [2yM; - (y - 111 - -  
p1 Y ' l  

1 



I 
I 
I 

where y i s  the ratio of specific heats of air. 

The notation used i s  shown in the sketch below, which shows an idealized normal attached 
shock wave. 

P1 I p2 
/ / / / / / / / / / / / / / / /  ////////////,// 

Vehicle Structure 

I f  the shock wave oscillates relative to the vehicle structure, the pressure p does not 

remain constant, but increases as the shock front moves upstream and decreases as it moves 
downstream. The static pressure p 

shock front velocity remains small compared with the velocity u of the approaching flow. 

In Appendix A, a method which can be used to allow for this change in pressure and 
velocity, i f necessary, i s  formulated. It i s  not necessary, in t h i s  case, to introduce the 
approximations made in Section 3.4 and thus, there i s  no restriction on the amplitude of 
oscillation. The theory formulated allows both sinusoidally oscillating shocks and shocks 
oscillating at constant speed to be considered. 

2 

can only be assumed to remain constant provided the 2 

1 

Appendix B shows how the theory developed in Section 3.4 can be formulated without the 
restriction on amplitude of the oscillating shock. Appendix C shows how the analyses, 
which have hitherto been restricted to simply -supported panels throughout- the report, 
can be developed for the case of clamped-clamped panels. Appendix D gives the logic 
for the computer program used for computation of the analysis of Section 3.4. 

2 



2.0 DISCUSSION ON BEHAVIOR OF OSClLLATlNG SHOCKS 

2.1 Examination of Experimental Data on Shock Oscillation 

It i s  a well known fact that the shock waves which form around aircraft and space vehicles 
during transonic and supersonic flight in the atmosphere are not stationary but oscillatory 
in nature. As a flight vehicle accelerates through the transonic regime of i t s  flight, the 
shocks run backwards down the vehicle skin and oscillate simultaneously in some manner. 
With high speed aircraft the annoying phenmenon known as “aileron buzz” has been ex- 
perienced for many years; in the case of space vehicles, the unsteady loading caused by 
the running and oscillating shocks i s  more serious. 

The shocks which occur on a typical space vehicle form about the shoulders and flares of 
the vehicle. These shocks are aerodynamically coupled with the turbulent boundary layer 
and separated flows at these points. Calculating the vehicle skin response to such a coupled 
unsteady pressure field would be a very complicated task. However, i f  i t  i s  assumed that 
the pressure field due to these coupled phenmena can be separated, then the vehicle skin 
response can be determined for each forcing function, and the actual skin response found 
by summing the responses. %is  approach affords a great simplification in the mathematics 
and i s  adooted in this report. 

Although it i s  well known that the shocks are oscillating in  nature, evidence as to the 
nature and type of oscillations i s  sparse and the measurements that have been taken, often 
suggest conflicting physical models. This i s  probably due to the complex coupled nature of 
the flows and the probability that different data have been gathered from entirely different 
flow regimes. 

In Reference 3, an attempt was made to set up an oscillating shock in a wind tunnel (at 
M*2) with the use of an oscillating aerofoil. The acoustic measurements indicated that 
the turbulent boundary layer pressure frequency spectrum was increased over a broad band 
with no evidence of discrete frequencies present: however, these could have been masked 
since there was much tunnel noise present. In Reference 2, Krause indicated that oscillating 
shocks may have been responsible for discrete frequencies found at about 200 and 220 
cps during the Saturn S A 4  flight. In  Reference 4, experimental work by Kistler revealed 
the existence of discrete frequency oscillations of a shock wave associated with a separated 
flow region at supersonic Mach numbers. However, repetition of this same work by Coe , 
at Arne A.F.B., did not reveal the same discrete frequencies but suggested that the shock 
wave simply magnified the pressure fluctuations of the turbulent boundary layer. In Refer- 
ence 5, during recent s l e d  tests at Holloman A.F .B., the existence of discrete frequencies 
of about 215 and 430 cps has been observed on a flat plate at transonic Mach numbers 
( W O  .84). 

In References 6 and 7, Lowson suggests that the shock wave i s  very quick to couple with 
any forcing frequency present in the local environment. Such a forcing function could 
result from resonances of the panel or from discrete frequencies present in  the turbulent 
boundary layer pressure frequency spectrum. Lowson also makes the interesting suggestion 

3 



(which kos ais0 been made previously by other authors) that the peak pressure fluctuations 
beneath the shock are due to shock-turbulence interactions. 

As there i s  much evidence that a shock can oscillate at a discrete frequency, this case wi l l  
be considered in  the following sections of the report, particularly since the structural 
response problem i s  probably more easily analyzed and set up for digital computation than 
for the randomly oscillating shock case. 

2.2 Definition of a Theoretical Model for Shock Oscillation 

x = o  I x = a  

The oscillating shocks which are .examined later in this report,can be considered to oscillate 
about a mean position x = D on the panel, in a direction parallel to two sides of the panel. 
I f  the amplitude of vibration i s  H, then the position of the shock front at any time t may 
be given by: 

X = D + H s i n a  t (2) 

i f  a i s  the angular frequency of vibration. 

4 



, 3.0 

3.1 

I 

I 

I 

i 

1 
I 

Panel Response to a Time Dependent Force 

If the case of small viscous damping for a panel i s  assumed, cross coupling of the modes due 
to damping may be ignored and the well known Lagrange equation of motion (Equation 3) 
may be written: 

where: 6 ,it) i s  the generalized displacement coordinate at time t 

i s  the generalized mass = ph f (x,y) dx dy M r X Y  ff r 
i s  the generalized damping coefficient = 2 M w 6 

r r r r  

i s  the generalized stiffness =M w 
r r r  

C 

K 
2 

Lr (t) i s  the generalized force at time t = 
X Y  

f (x,y) i s  the mode shape 

h i s  the panel thickness 

p(x,y,t) i s  the spatial pressure time history 

i s  the critical damping ratio 6 

r 

r 

P 

w 
r 

Subscript r refers to the rth mode 

i s  the density of the panel material 

i s  the angular resonant undamped frequency 

Equations (3) describe the effective motion of a set of independent single degree of freedom 
systems. 

The total displacement at any point (x,y) on the panel and at any t ime t i s  given by: 

r =  1 (4) 
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The displacement G(x,y,t) i s  the sum of the products of the generalized displacement co- 
ordinate and the mode shape of each mode. Normally i t  i s  found that only the first few 
modes provide significant contributions to the panel displacement and that the contributions 
of the higher modes are negligible. 

The strains in the x- and y- directions, e (x,y,t) and e (x,y,t), respectivelxare given 

by equations (5) and (6), by considering simple Sending theory (Reference 8): 
Y X 

n 

I t  i s  found that more modes must be considered in the case of the strain time history, than 
in the case of the displacement time history in order to obtain the same accuracy in the 
response time history . 

x,y on the panel at time t are given by: 

where E i s  Young's Modulus of Elasticity 
Y i s  Poisson's Ratio 

If L (t) = 0 in Equation (3), the solution i s  given (see Reference 9) by: 
1 '  

1 I 

C t  

"\ 
I <  2 

provided the damping i s  subcritical (K >C / 4M ) .  

where 5 i s  the initial displacement in the r mode 

r r  r 
th 

r 
0 

. th 
and 5 0  i s  the init ial velocity in  the r mode 

6 r 



0 do t 

If the panel i s  subjected to an elerrrtRtal impulse at time u of L(u) du, as shown in the 
above figure, then the generalized displacement in  the rth mode, due to the generalized 

r 
th 

modal impulse L (0) du is: 
r 

c (t-0) 
r -- 

d t  (t) = e 
r 

(10) 
L (u) do 

M 
This equation was obtained by substituting the incremental velocity d & 

into Equation (9) and putting 5 

the continuous application of the force L(u) i s  

= 
r 

0 

= 0. Thus the generalized coordinate at time t due to 
r 0 

&' k ;; ; N  \,+d'- 
C / J 

(t-0) -- 
r 2M 

sin w (t-a) du 
r 

d L, (4 e 

r 

Equation (1 1) is often termed the Duhamel or convolution integral. 

In order to determine the complete solution of Equation (3), it i s  necessary to add Equations 
(9) and (1 1) together. Thus the generalized displacement coordinate: 

* 
c t  

r 
C 

r 
2M 

M w  L r (0) e sin wd (t-u) do 

t - -(t-u) 

r 
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I 

The first term in this equation represents the effect of initial displacement and velocity, 
while the last term represents the effect of the disturbing force. 

I If the init ial  displacement and velocity are assumed zero, then Equation (12) may be 
rewritten: 

C 
r -- 2M (t-u) 

p(x ,y, a) f(x) f(y) dx dy e 
1 

I (13) 

1 

Mrwd 
r u = O x y  

€$t) = 

1 during excitation, and 

where excitation ceases at time 7. 

3.2 Simply - Supported Panel Respc,se to Grazing Incidence Moving Shocks 

I 
l- 

1.- - - - -  
~ = a  

Consider a rectangular panel mounted in an infinite baffle and subjected to a plane step 
shock of overpressure p moving parallel to a pair of edges, as shown in the above sketch. 0 

I f  the shock front has reached a position ,&) at time 
ment coordinate at time t for the innth mode is: 

u then the generalized displace- 

C - T=&-u) 
€ (t) = - 1 7' po f(x) f(y) dx d y e  sinb d(t-u))du 

u=o x=o y=o Od mn 

8 



For a simply - supported panel: 

max f(x) = sin- 
a 

where 

1 a = panel length i n  x - direction 
I 

b = panel width in y - direction 

m = mode number (x - direction) 

n = mode number (y - direction) 

The case of a clamped-clamped panel is discussed in  Appendix C .  

Thus evaluating Equation (15) for a simply - supported panel gives: 
I 

€ (t) = 0 
mn 

(if n i s  an odd integer) 

(if n i s  an even integer) 

3 . 3  Simply - Supported Panel Response to a Grazing Incidence Shock Moving wi th  a 
Constant Velocity . 

3.3 a 1 Introduction 
i 

I Before considering the case of a panel subjected to an oscillating shock loading it i s  in- 
structive to consider the case of a panel which i s  subjected to a shock which moves across 
i t  at constant velocity. Th is  case i s  not simply one of academic interest, but i s  of prac- 
tical interest also. As a space vehicle accelerates through the transonic regime, the 
shocks which form at the cone-cylinder intersection and at the flares and step on the 
vehicle profile tend to run down the structure from one shoulder to the next. The velocity 
at which these shocks run down the structure i s  uncertain; Reference 10 suggests approxi- 
mately 8 in ./sec . . 
Mach numbers (Reference 1 l ) ,  and a typical Mach number-time curve (Reference Z), a 
value of 5 ft./sec. would seem more probable. Since these running shocks pass over the 
vehicle skin, which i s  not specifically designed to resist oscillating shocks, a running 
shock could provide a severe loading case for some parts of the vehicle. 

, 

I 
I 

I 
i 

I 
I 
I 

However, with a study of the shock patterns formed at different 

I 
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3 . 3 . 2  Theoretical Analysis 

Assume the panel i s  flat (this i s  not a severe approximation for panels of large boosters where 
curvatureeffects , which raise the natural frequency, are small). Also assume the panel i s  
unstiffened and simply - supported. The case i s  considered where the panel i s  init ially un- 
loaded and a low pressure region i s  assumed to move across the panel with a constant velocity 
in the x - direction as shown in the sketch below. 

- - - I  
x = o  

Let P2 - P1 - - Po f then the pressure at any point x,y on the panel and at time u may be 

assumed to be: 

PG<,Y,Q) = 0 a >  x >  v u  

P(X,Y,Q) = Po v o > x > o  

Thus, the panel response i s  divided into two time regimes (A) and (8). In the analysis 
, wo , M  , 6 and C are abbieviated 

mn mn’ mn 
mn mn 

d which follows, the -following symbols w 

2 
to w , w M, 6 ,  and C respectively. Note that w 0’ 0 

th (A) For time 0 < t < a/v: The generalized displacement coordinate of the mn mode i s  
given by 5 (t) = t, (0 

4nn mn 

where: 

*06(t- u )  
t v u  b 

sin? dx dy e sin w (t- a)du 
. mnx 

a 
mn 

The similarity to Equation (15) i s  immediately noticed as [ ( u )  has simply been replaced 
by v u  . Thus, using Equation (16), Equation (17) may be shown to be (after integration 
and rearrangement): 

10 



mnv mnvt 
a a 

+ (w--) cos- 
+ 

a 

2 ab Po 
5 1 (t) =,- 

mn mnr Mw 

mnvt mnvt m w  - (w -I-- )cos - w b sin - 
a +  0 a a + 

2 
2 [ b o b )  + (0 + E) a '1 

w 8 s i n  wt + ( w  -Ev) cos o t 
+ 0 a 

a 

mlrv 
a 

rnrv 

0 - 
2 
n 0 

J f  
2 r 2  (t.3 k) + @ + - \ 21 

0 
+ - + e  . 2 

0 
0 

w 6 sin wt + (w +-) . cos ut w 6 sin ut + w cos ut  0 + 

a ' J  1 '-0- 
(where n i s  an odd integer) 

5 (t) = 0, (where m i s  an even integer). 
mn 

th (B) For time a v < t < 00: The generalized displacement coordinate of the mn 
given .- by: 5 (t) + 5 

of the shock front across the panel i s  given by: 

mode i s  
(t), where the residual response due to the passage 

mn mn mn 

a vu b 
- w 6(t-u ) 

sin w( t -u  ) dg 1 . mrx . 0 nry dx d y e  
- 

a b 
mn 

5 1  

(1 9) 
which gives on evaluation and much rearrangement: 

1 1  



mnv wa a 
a V 0 V 

wa 
0 V 

w b sin (- - w t  + m r )  - (w +- ) cos (- - ut + m r )  w b sin w (- - t)-wcos 
- 4- 

2 
0 u 

2 
2 (w06) + (w + - I a 

(where n i s  an odd integer), 
_. 

5 (t) = 0, (where n i s  an even integer), 
rnn 

The generaiized dispiacement coordinate of the forced response during the second time 
regime i s  given by: 

W06(t ' 0 )  

s i n b  nrY , dx dy e s i n  w ( t  -0) da a 
(21) mn 

which gives on integration and rearrangement: 

4 ab Po 
2 2 

0 
5 2 (t) = 

mn m n r  M o w  

(where both rn and n are odd integers), 

(22) 5 (t) = 0 , (where either m or n are even integers). 
mn 

The above integrations were evaluated using commonly tabulated integrals (Reference 12), 
and the integrals specially evaluated in Reference 13. 
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3.3.3 Small Damping Case 

If  damping i s  negligible then putting S - 0 in Equations (18), (20), and (22),respectively, 
gives: 

mnvt  
a 

wOt cos- - cos w 

(23) 

- 
2 

w2 - (=) mnn M 
O a  

(if n i s  an odd integer). 

z , (t) = 
mn 

1 a 
cos (wo; - t + m r )  - cos wOt 0 

a 

2 abp 

(if n i s  an odd integer). (24) 

(25) (if both m and n are odd integers). 
o v  I J 

4 abPo 

2 2  z (t) = 
-n w A h ,  '.-o L I... I (1 -n , 1 1 1 .  

again 

even integers . 
(t) = rl 

mn mn 

(t) = 0, i f  n i s  an even integer and E (t) = 0 , if m or n are 
mn 

2 

For the case of a shock arriving in  a direction normal to the panel surface, v .+ Q), 

and thus, time regime (A) disappears; f 

the generalized displacement coordinate becomes: 

(t) and %, 
mn rnn 

(t) must be neglected and 
1 

For time 0 < t < ax - 
1 - cos ooi 5 (t) = 2 2 

4 abPo 

mn 
0 m n r  M o  

3.3.4. Total Displacement, Strains and Stresses 

The total displacement, strains and stresses in the x - and y - directions,respectively, of 
any po'nt on the panel, may be determined by substituting the appropriate value of 

(t) and the values of x and y into Equations (41, (5), and (6) and (t) or 5 
mn mn 

[ *  
then (7) and (8). 
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' 3.3.5 Displacement of Panel for Large Time 

I t  i s  interesting to note that the deflection of a uniform simply - supported panel, sub- 
jected to a uniform pressure p (see Reference 8, p. 1 lo), may be written (when the 

symbols are rationalized): 
0 

j6po 12(1-Y * )  -. 
1 ' E h 3  

m=l 

. mnx . nny 
s'nb sin- 

a 

I 
I (where m and n are odd integers). 

. but for a simply - supported panel: 

= n2 h [-$ + 
mn 12 P(1- Y 
0 W 

i 
and: 

M = ~ h a b / 4  
rnn 

Thus, Equation (27) may be rewritten: 

4 po ab 2 2 mnx sin nry  
a 

2 2 
0 

G(x,y,t) = 
n 

m=l n=l 
mn 

I 

, Some time after the panel is subjected to a step shock wave, i f  i t  i s  viscously damped, 
the panel vibrations wi l l  decay and the displacement of the panel should be equal to I 

that of a panel subjected to a uniform pressure p 

above in  Section 3.3.2, the displacement should be equivalent to that given by 

Thus, i f  t - OD in t ime regime (B) 0' 

I Equation (30). Putting t - OD, i t  i s  seen that 5 ,  (t) - 0 
mn I 

4 abPo 
(where both m and n are odd integers). 2 2  

0 

[from Equation (20)] and (t) - 
mn m n n  Mu 

Thus, the total displacement i s  given by Equation (4): 

14 



1 4 a b  PO 

mn T2&,2 

. mrx . nry 
a b  

sin-ssn 

m=l n=l L L4 J 

I t  i s  seen that Equations (30) and (31) are identical and that the panel equilibrium dis- 
placement after a long time i s  that due to the uniform pressure p 0' 

3.4 Simply - Supported Viscously Damped Panel Response to Grazing Incidence 
1 
Assume the position of the shock front at t ime u i s  given by Equation (2): 

(2) x = D + H sin u u  

Putt ingl(6) = D + H sinan in Equation (16), thus gives the generalized displacement 

coordinate of the mn 
th 

mode for panel response to the sinusoidally oscillating shock: 

-0 6(t-u) 
sin o(t- u)du m r H  sin a u )  ] e 0 2 ab Po 

5 (t) = 2 a mn 

u=o (32) 
rnnr  Mo 

However, Equation (32) includes the effect of a suddenly applied pressure over the 
panel from x = 0 to x = D, the generalized displacement coordinate of which i s  given by: 

-0 5(t-U) 
sin w ( t - n )  du 0 

2 a (0 = static 5 
(33) mn m n r  Mo 

Thus, the panel vibrations due only to the shock oscillations are given by Equation (32) 
less Equation (33): 

* 6(t-u) 
2ab '0 [[ cos- m:D - cos (mnD - +- m r H  sin a+] e 'sin o(t- u)d u 2 a a (t) = osc 5 

(34) 
mn mnl i  Mw 

This method used i s  similar to that used by Ungar in Reference 14, w i th  the exception 
that viscous damping i s  included from the beginning of the analysis, while in  Reference 
14 damping i s  not included and suggestions are simply made for its inclusion when the 
analysis i s  completed. 
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Expanding the second term, Equation (34) becomes: 
L 

I 

- 0  S(t-a) 
sin o (t-o) do 

m r H  

Integrating the first term in  the above equation i s  straightforward; however, obtaining 
a closed form solution for the integrals of the second and third terms does not appear 
possible. In this section of the report, an approximation i s  made for the second and 
third terms which i s  only valid i f  maH/a is small. A much better approximation (using 
Bessel functions) which does not restrict the maximum value of mrH/a i s  given in 
Appendix B . 

Putting mnH/a = P and as = z and using only the first term in  the series expansion for 
sine, which is thus valid only when P i s  small gives: 

sin (p  sin z) x p sin z x sin p sin z 

Using only the first two terms in the series expansion for cosine, which again is only 
valid for small p gives: 

1 2 2 
2 2 cos (p sin z) x 1 - - (p sin z) I - 2 sin' E sin z 

1 
2 a1 - - ( 1  -cosp)  ( 1  - c o s 2 z )  

1 1 
2 2 cos ( p s i n z ) x - ( 1  + c o s p ) + - ( 1  - cosp )  .cos22 

(35) 

(37) 

Figure 2 (extracted from Reference 14) shows the accuracy of these approximat ,3115 for 
two different values of p .  As expected, the approximations are better for small values 
of p, and p = r/2 would seem to be the largest reasonably acceptable value which 
should be used. 

Substituting these approximations into Equation (35) gives: 
L 

m r D  1 m r D  maH - COS-) -T(cos-) ( 1  - COS-)COS 2ao + 
a a a (t) x. osc t 

mn 

-G) qt-o) 
+ sin- sin - sinao e sin o(t-o) do 

(38) 
mnH 

a 
1 m r D  mrH 

a a 
(provided n i s  an odd integer and - is mal l ) .  



Equation (38) contnlns three tent: vif irch ure integrated separateiy: 

I (39) 

~ t i i c h  Fives an evaluation: 

L a 
ab Po mrD 
2 2  a 

(cos-) ( I  - I =  1 
0 m n m  MLU 

t 
w 6(u-t) rnrD m r H  0 

(cos-)( 1 - cos-) e sin w (u-t) cos 2 a o  do 
a a 

I =  

which gives on evaluation: 

ab Po m r D  m r H  
( c o s y )  ( 1 - cos-) 0 2 a 

I =  
2 m n r  Mw 

+ I 

- " o y w  6 sin ut + (w + 2a )-cos w t  w 6 sin 2a t - (w + 2a)Ocos 2at + e 

w S sin 2a t + (w - 2a )*COS 2a t - e 
2 [ (w0~l2 + (w - 2a )2] 

w 5 sin ut + (w-2a ).COS w t 0 - wo61 0 

0 0 'I (42) 
2 

+ 
2 [ ( w o ~ )  + (w + 2a )2 ] 

and, 

L 

2 ab Po m r D  

mn r2 MU 

1 = -  (sin-)(sin- sin u(u-t) sin au da 
a a 3 

which gives on evaluation: 



-w % 
O[(w - a ) sin w t  - w 6 cos w d +  0 mrD mrH [ - a)sin a t - 0  6 cos a t - e 2 ab Po 0 

(sin - )(sin - ) 2 a a 
I =  
3 

rnnr  Mw 

-w St 
(w + a ) sin a t + w 6 cos a t + e O [(w + a sin w t  - w 6 cos ut] 0 0 + 

2 (wo6)2 + (w + a l2 ] 
Thus: 

ab Po mlrD 
(cos - )( 1 - cos € (t) = 2 2 a a osc 

mn m n r  M u  

6 sin 2a t + (w - 2a - 
2 2 + (w - 2a ) (wo6) 

w 6 sin 2a t + (w + 2a ) cos 2a t + e 0 
2 

- 
2 (wo6) + (w + 2a ) 

-w 6t 
- a sin ut  - w 6 cos wil 

+ mrD mrH (" - a 0 sin a t - w 6 cos a t - e 0 
a a 2 2 +(sin -&in -) 

(0,s) + (fJJ - a 1 

-w 6t 0 
(w + a ) sin a t + w 6 cos a t + e [(w + a sin wt - w 6 cos ut] 0 0 

2 2 
+ 

bO6) + (0 + a 1 
(45) 

If damping i s  small, 6 - 0 and Equation (45) reduces to: 

cos 20 t - cos o0t 

w i  - (2 a )  
a 

m=H I ab Po m r D  
(cos - ) (1-cos-) 1 - cos WOt - 

a (0 = 2 2 

0 mn rnnn Mw osc 

\ 

mrD mrH [ wo si;; t - 
+ 200 (sin -) (sin - )* 

a a 
- a  

1% 



which agrees with the result obtained by Ungar it? Reference i 4 ,  except that the term 
2 2 

in thisarialysis, with w - (2a ) as the denominator, i s  half the value of the equivalent 
term in the analysis of Reference 14, which is believed to be in error. 

For large time, t * 00, Equation (45) reduces to: 

2 6 sin 2 a  t + (w - 2a ).cos 2 a t - 
(o,6)2 + (o - 2a l2 

(w - a ).sin a t - w 6 cos a t 

rnrD 
a 

(cos -)* (1 - cos € (t) = 2 2 
mn r n n r  Mw 

+ 0 
a 2 2 b06) + (m - a ) 

2 

abpo I osc 

w 6 sin 2a t - (w + 2a )-cos 2a 0 - 
(oo6)2 + (w + 2 a )  

(o + a )*sin a t + w 6 cos a t 

2 2 ( ~ ~ 6 )  + (0 + a 1 

I 

0 + 

t 
I 

I 
I 

I 
I 
I 
I 
I 

(47) 
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4.0 DISCUSSION AND COl";\f)'JTA,T!SN OF RESULTS 

I t  must be remembered that Equations (45),(46), and (47) are approximate only and are 
only valid for small amplitude shock oscillations and it i s  recommended that they are not 
used for H > a/&. However, it i s  observed that a l l  three equations show that -6 (t) osc 

mn 
vanishes for H - 0, the expected result. 5 

where X i s  any integer; however, this result i s  of l i t t le practical interest since the 
equations are only valid for H < a / h .  

(t) 
mn 

also vanishes for H = 2 X a/m, 
osc 

It i s  observed that Equation (47) Indlcstes tho: for Q damped panei,after o large time 
when steady state oscillations are reached, the vibrations are composed only of vibrations 
at the forcing frequency, the free or natural frequency vibrations having subsided to zero. 
This i s  a general result for harmonically forced vibrations (see Reference 9, p. 39 et seq.). 

It i s  observed from a l l  three equations that there are panel resonances when a * w/2 and 
when a + w .  

4.1 First Mode Response to Shock Oscillating About Panel Center 

If D = a/2, (m = 11, for a * w ; Equation (47) reduces to: 

w (2W sin a t + w 5 cos a t)  ab^^ ( .  sin (- -- co;a t -+ o 0 
E,sc(t) = 2 2 

mn m n r  Mw 

If 5 + O ,  Equation (48) reduces to (since u -w ): 0 

cos a t -+ 2 sin a t + 6 cos a t -- 
tj2 + 4 6 

but i f  6 -0 

ab Po ,. I (sin 2 € (t) = 
OSCmn m n r  Mw: 

(49) 

. .  

Figure 3 shows the dynamic magnification factor (for the first mode) plotted against the 
amplitude of shock oscillation for different values of the panel damping ratio 5. The 
amplification factor was obtained by dividing the maximum value of Equation (So) by 
the first term of Equation (31). I t  should be noted that although this plot i s  for the first 
mode dynamic magnification factor, it is also approximately correct for the overall 
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I dynamic magnification factor, because the higher mode displacements are very small 
compared with that of the first mode. 

2 6 2 + 5 0  2 2  
mn m n r  Mo osc 

4.2 First Mode Response to Shock OscillatingAbout Panel Edge 

For D = 0, (m = 1) and a/2-w, Equation (47) reduces to: 

I but if 6 i s  small then o -u and Equation (51) becomes: 1 
0 

but if 6-0 I 

L I 
Figure 4 shows the dynamic magnification factor (for the first mode) plotted against 
amplitude of shock oscillation for different values of the panel damping ratio S. The 
amplification factor was obtained by dividing the maximum value of Equation (53) by 
the f i r s t  term of Equation (31). Again it should be noted that although this plot i s  for 
the first mode dynamic magnification factor, i t  i s  also approximately correct for the 
overall dynamic magnification factor, because the higher mode displacements are small 
compared with the first mode. 

Analysis of Results Computed by the Digital Computer Program 1 4.3 

As discussed in Appendix D, Equation (47) was progrummed for analysis by a digital 
computer. Figure 5 shows two typical plots of first mode response divided by response 
to the same static load against non-dimensionalized time for two forcing frequencies 
near to the two resonances. A representative value of damping ratio 5 i s  chosen. 
Figure 6 shows a plot of the dynamic amplification factor for the f i r s t  mode as a 
function of shock amplitude for the shock oscillating about the panel center. The 
different plots in this figure indicate how moving the forcins frequency slightly off 

i s  sufficient to reduce the dynamic magnification factor by a factor of 10. In Figure 7, 

resonance curve. 

~ 

1 
~ 

I 
I the resonant frequency reduces the amplification factor; a 5/0  increase in frequency 

the data of Figure 6 i s  replotted in the form of a typical displacement versus frequency 1 

L 
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I 

I 

In Figures 8 and 9 typical plots of dynamic amplication factor against non-dimensionalized 
frequency are also given for shock oscillations about a position of D/a = 0.2. The 
different plots on each curve are for different shock oscillation amplitudes. The two 
Figures 8 and 9 are for the first resonance ( a/' = 0.5) and the second resonance 
(a/w = 1 .O)/espectively. It i s  observed that the dynamic magnification factor i s  much 
more dependent upon the shock oscillation amplitude for the f i r s t  resonance than for 
the second, Figures 7, 8 and 9 are a l l  plotted for damping ratio b = 0,005. The 
damping ratio for typical structures i s  in the ronge of 6 = 0.005 to 0.02, so t h i s  i s  
a realistic value of S to choose. 

Figures 10 and 11 show plots of the dynamic magnification factor against mean position 
of the oscillating shock (X/a) for three representative values of 6 and for shock fre- 
quencies of @ =  0.5 and 1 .O. In Figure 10 the dynamic magnification factor i s  given 
for shock oscillations of amplitude (H/a = 0.1); in Figure 11 the shock oscillation ampli- 
tude i s  H/a = 0.5. In recent tests in the 7 inch supersonic tunnel at the Marshall Space 
Flight Center, Huntsville, Alabama, shock waves have been observed to oscillate during 
steady tunnel runs at a Mach number M = 2.44. The excursions of the shock waves were 
of the order of a boundary layer thickness. Scaling this oscillation to the Saturn V and 
panels near to the flare would suggest that H/a x 0.1 i s  a reasonable value. Thus the 
$yx-Ic mc~gnlflrntlnn kctoegiven in Figure 10 would seem to be realistic provided the 
shock couples to the f i r s t  resonant frequencies of the local panels. 
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5.0 CONCLUSIONS 

The experimental data of oscillating shock loads experienced by ?ace vehicles which 
were examined were inconclusive. 
oscillate at discrete frequencies and also in a random manner. The case of a shock 
oscillating at a discrete frequency received principal attention. An approximate 
analysis was formulated and some numerical evaluation of the theoretical results 
undertaken. It i s  shown that amplification factors of up to 50 can be experienced 
by a panel with a damping ratio of about 0.005; this factor decreases to 12.5 for 
a damping ratio of 0.02. This  factor i s  for the first mode for a shock oscillating 
at the panel resonant frequency about the middle point of the panel with an ampli- 
tude of the semi-span; this appears to be the worst case. It i s  suggested that for the 
Saturn V a more realistic dynamic magnification factor would be between 5 and 15 
(see Figure 10); this assumes a shock oscillating about the center of a typical panel 
at the panel resonant frequency and panel damping ratios of between 0.005 and 
0.02. 

There i s  evidence to show that shocks can 

An analysis in Appendix A gives a method of determining panel response to shocks 
oscillating at constant speed. The case of shocks running down the vehicle i s  also 

oscillating shocks i s  given in Appendix B. In this analysis no restriction i s  placed 
on the shock oscillation amplitude. This more refined analysis also shows that reso- 
nance w i l l  occur in each mode of the panel i f it i s  subjected to shocks oscillating 
with any "subharmonic" (i.e.,o, 0/2 w/3, w/4,eic) of the natural damped reso- 
nant frequency of the panel. 

considered in this report. A much more exact solution fer &he ccce ef c, -.,. n t --,vu ,*-:A. * I '7 I.. 

Most of the analyses in this report are restricted to simply-supported panels with 
viscous damping; however,in Appendix C a method i s  given which shows how the 
analyses can be extended to clamped-clamped panels to a good engineering 
approximation. 

The reader i s  referred to References 15 16 and 1 7 for theoretica I and experimenta I 
analyses of panel response to traveling sonic boom (N  - waves) explosive blast and 
to step shock waves. 

i 
I 
I 

. I  
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I 

It i s  suggested that the theoretical analysis of Appendix B, which has no restriction 
placed on shock oscillation amplitude, deserves further attention and digital com- 
putution. This analysis should give accurate answers for the larger shock amplitudes 
and also for the panel response in  i t s  higher modes which cannot be attempted with 
the approximate analysis. 

f 

24 



I -  
D - 7.0 ACKNOWLEDGEME.h!TS 

The author would like to thank Mr. D. Hargrove of Wyle Laboratories for writing the 
flow chart given in Figure D1 and the computer program shown in Figure D2, The 
author also thanks Dr. E. Rodin of Wyle Laboratories for indicating the existence of 
the identities, given in equations ( B l )  and (B2), to the author. 

I 
I 

I 
I 

t 

I 
25 



APPEiqDiX A 

Then: 

(A) For time 0 < t < a/v 

(e) For time a/v < t < 2 a/v 

(C) For time 2 a/v < t < 3 a/v 

2,= 5 ,  
2 B = F , + 5 2 + 5 3  

4 = 5 ,  i- 5 ,  + z3 + 5 ,  + 5 ,  
I 

etc ., 
where 6 

the rnn 

has been abbreviated to 5 , the generalized displacement co-ordinate of 
mn 

mode,and i s  given by: 
th 

i 

SOLUTION OF PANEL RESPONSE TO OSCILLATING SHOCKS BY THE SUMMATION 
OF INTEGRALS 

As i s  discussed in the Introduction and Section 2 of this report, the manner of oscillation 
of shock waves relative to space vehicles i s  not at a l l  well defined. Also, i f  the velocity 
of oscillation of the shock becomes comparable to that of the vehicle, the pressure down- 
stream of the shock wi l l  be different when the shock moves upstream from when i t  moves 
downstream. The analysis which fol lows shows how the analysis of Section 3 .3  can be 
developed to allow for these factors. 

1 .  Simply Supported Panel Response to a Step Shock Oscillating at a Constant Speed 

t 
26 



-fJ-&(t-rl) . . 
U s i n  w(t-a) 

Mo 
where F (x,yro) = sin- mm sin nrY e 

a 

- 
It i s  seen that the integrals 

Section 3.3 of this report. Some simplification may be achieved in the later time regimes 
by summing some of the integrals. For instance in time regime (C): 

(t) 
mn mn mn 

5, (t) and $(t) have already been evaluated in 

However, probably the simplest way to evaluate the panel response after i t has been 
subjected to several crossings of the shock i s  to evaluate the general integral: 

~% = TTUa/v YajZvu 7 , 
. F (x,y,u) dx dy do 

(A2) 
o=ScqX. x=Wa+Xvu y=O PO 1 

where S, T, U, W, X, Y,and 2 are integers. 

This method of determining panel response may appear to be lengthy; however, with the 
use of Equation (A2) and a digital computer, it should not be impracticable. I t  should be 
noted that this method i s  sufficiently f lexible to allow the use of a different value of p 

0 
and v as the shock moves up and downstream i f  this refinement i s  required. 

c 
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(b) 
across the panel but about some mean position D. 
tween x = D - H and x = D + H where 2H i s  the shock front excursion, instead of between 
x = 0 and x = a.  For instance,the first three integrals of Equations (Al) above 
5 , (t) , r, (t) , and 6 (t) would now become: 2 

The panel response i s  also readily formulated i f  the shock does not oscillate completely 
The integrations are now made be- 

mn mn mn 

<(t) = 7 [ po . F (x,y,u) dx dy da 
mn u=O x=D 1 

y-0 
D+H b 

mn 

i f  the shock i s  assumed to start oscillating about the mean position D. 

2. Simply - Supported Panel Response to a Sinusoidally Oscillating Step Shock 

The integrals are again formulated in a similar manner to those in Equations (Al) and 
(A3) above. Again the integrations are made between x = D - H and x = D + H. The 
distance vu now becomes H sin (Y u i f  a i s  the angular frequency of oscillation. The 
time H/v now becomes m / 2 a  i f  the shock front i s  assumed to start oscillating about a 
mean position D. The first three integrals E (t) , 

now become: 

- 
El  (t) , and t2 (t) 

mn mn mn 
would 1 
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This method proposed i s  alternative to that developed in Section 3.4 of the report. 

For each analysis developed in this Appendix , the total displacement, strains and stresses 
in the x - and y - directions,respectively,of any point on the panel may be determined 
by substituting the appropriate value of the generalized displacement e 
of x and y into Equations (4), (5), (6), 0, and (8) respectively. 

(t) and values 
mn 
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APPENDIX B 

SOLUTION OF PANEL RESPONSE TO SINUSOIDALLY OSCILLATING SHOCKS BY 
THE USE OF BESSEL FUNCTIONS 

In Section 3 -4 of this report, approximations for the functions cos (-sin u u  ) and 

. mrrH sin (- s i n  u u  ) are made using Equations (36) and (37). This allows the integration of 

Equation (35) to be made, although in practice it restricts the oscillating shock to small 
amplitudes relative to the pinel span, particularly for the case of the higher modes. 

However, it i s  noted that the use of Bessel functions allows a series solution to be 
found for the above functions and thus a much more accurate analysis for panel response 
to oscillating shocks can be formulated which i s  no longer restricted in the amplitude of 

m d  
a 

a 

oscillation of the shock front. 

Reference 18 gives: 

where: 

i s  a Bessel Function of the First kind, zero order, 

i s  a Bessel Function of the First kind, 2k order, 

th 
i s  a Bessel Function of the First kind, (2k+ 1) 

JO 
th 

'2k 

J2k+l order. 

These two identities [Equations (Bl) and (B2)j may be compared with Equations (36) 
and (37). Substituting these identities into Equation (35) gives: 

COS- m+D - (COS-)* mrD [ Jo (7) mrH + 2 m r H  
2 a a a 

I<=? 

- - t 
osc mn mnrr Mu 

(83) 

00 
mnH 

+ 2 sin ED a [(J2k+l (-))sin((2k+l) a a@) 

iF0 
t = o (if n i s  an even integer). 
osc 
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t 

-w bt 0 2 ab p 
(cos-). 1 - J (-) w - e - (w 6 s i n  ut + w  c o s w t )  

mnD 0 [ 0 m.H][ 0 
0 

mnrr M w w  
2 
0 

*(COS-) maD =I m r H  0 

I =  1 

m r  w S!u-t) 
t 

4 ab Po 
I =  2 0 I[ JPk (-=-)]e sin(w (u-t))cos(2ka u) du 

o=o k=l m n n  M w  2 

4 ab Po m r D  
2 I =  2 

m n s  Mu 

-w 6t 0 rw sin + - L K U  \ }*LO> _ _ _  W I  ..,1 ' 

l o  J +  
w 6 sin@ kat)+ <w - 2 k a  j-cosjr"ka i)- e 0 - 

2 [ ( 0 ~ 6 ) ~  + (o - 2ka )2 ] 
w 6 sin(2ka t)- (w + 2ka )*cos(Zka t)+ e s i n  ut + (w+2ka )-cos ut] 0 '11 (87) 

+ 
2 [ (0,6)~ + (o + 2ka )2 ] 

1 w 6 ( u  't) a0 t 

I3 - - - (sin-) muD *J [ [J2k+l ( ~ ) ] e  m r H  'sin w(u - t )  sin((2k+l) aa)du 
4ab Po 

mn r 2 h  a 

k=o 
Q) 

- 4 ab Po (s ine) [x [ [J2k+l  a ($)]I I 3 -  2 
mnr Ah 

(w - (2k + 1) a ).sin((2k+l)a h 0 6  cos((2k+l)-a t) - e O [(u-(2k+l)a)rinwt - w 6 cos ut] 

M) 
-0 6t 

+ 0 + 
2 [ (wo6) 2 + (w - (2k+l)a)2] 

-w St 

I) 
(w + (2k+l)a).sin((2k+l)a t)+ woc cos((2k+l).a t)+ e ~w+(2k+l)a)sinot -0 0 S coswt 

(88) 
2 

+ 
2 [ (woS) + (o + (2k+ l )~x )~ ]  
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6 sin 2kat + (w - 2ka) cos 2kat - e  w & s i n  w t  + (w-2ka)cosw I o  
(wo6) 2 + (w - 2ka) 2 

-ogSt 

w 6 s i n  2kat - (w+2ka)cos 2kat +e sinot + (w-2ka) cos - 0 bo8 
( ~ ~ 5 ) ~  + (w + 2ka)2 

-w 6t 

(w-(2k+l)a)sin(2k+l)at-w 6cos (2k+l)at -e fw-(2k+l)a)sinwt -0 6coswt 
t + 0 0 I 

(0~6)  2 + (w - (2k+l)a) 2 

6t 0 
(w+(2k+l)a)sin(2k+l)at+w 6 cos(2k+l)at+e (w+(2k+l)a)sin - 6 cos 

+ 0 0 
(wo6) 2 + (w + (2k+l)a) 2 

If damping i s  small, 6 -0 and Equation (B9) reduces to: 

1 COS- mwD [1 - J (m.n)l[l -coswOt - 
a O a  

cos2kat - cosw t 

w0 - (2ka) 2 ” +  

2 ab Po 
2 2  € (t) = 

osc 
mn mnw Mw 

00 

- .Jo’ [b2k (94 2 
k= 1 

m 
w sin \rk+l)at - (2k+l)a sin w I 

+,20 0 a C (J2L+l (?))[ w 2 - a  2 
M) 0 

+ 

32 



For large time, t-m and Equation (B9) reduces to: 

I 1  w 6 sin 2kat - (w + 2 ka) cos 2kat 0 - 
(ao&) 2 + (w + 2ka) 2 

(a + (2k+l)a)sin(2k+l)at + wo6 cos (2ktl)at 

2 2 (woS) + (a + (2k+l)a) 
t 

It i s  interesting to compare Equations (B9), (BlO), and (B11) with (45), (46), and (47) 
respectively. It i s  observed that the first terms of the series in Equatim (B1 1) (when 
k = 1 in the first sum, and k = 0 in the second sum) bare a strong resemblanke to 
Equation (47). In fact, Equ.ation (47) differs from the f irst terms of Equation ( B l l )  in that 

mrH r H  . (47) the factor 2(1-J (-))is replaced by ( 1  - cos -),the factor 2J p-) IS 
m r H  

O a  a 2 a  

i s  replaced by 1 [l - cos and the factor 21, i s  replaced by sin - m H  . 
a 2 a 

The agreement between equation (41) and the first terms of equation (B 11) i s  very good 

provided - rmrH i s  not too large,as the following example illustrates. 
a 
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mri- i  
a For - = 0.5: - 

mnH mrH 2 1 - J (-)l = 0.1231 ; 1 -cos- = 0.1224 
O a  a 

6) [ 
= 0.0612 ; 1 [1 - cos F] = 0.0612 mrH 

2 
(ii) 2 J (-) 

2 a  

l a  a 
= 0.4794 m r H  . m r H  (iii) 2 J (-) =0.4845; SIR- 

m r H  
It may be observed that for- = r/2 the agreement i s  not neurly so &, and the 

a 
mrH 

agreement becomes progressively worse as the value of - is increased. 
a 

It i s  also interesting to note that for small values of- i t  i s  sufficiently accurate to 

consider only the first terms of the series in Equation (81 1). This i s  obvious from an 
examination of the figure below: 

m r H  
a 

1 .o 
0.8 

0.6 

ys 0.4 

'D 0.2 

2s 

b b  
0 

Q, 
3 - 9 0 

-0.2 

-0.4 

Values of x 

0 

This figure shows that the second terms of the series in Equation (B1 1) start to become 

significant as - --r/2. When - = T , the largest value which needs to be 

considered for the first mode (m = l), the second terms are appreciable and in fact 
J1 (r) 5 J3 (r) . For higher modes (m>l) the higher order Bessel functions become 

appreciable rapidly for smaller values of- and can no longer be neglected. 

m r H  mrH 
a a 

mnH 
a 

One other interesting observation, which can be made by examining Equation (B1 l ) ,  i s  
that not only do f i rst  mode resonances occur for excitation by a shock wave oscillating 
,at the resonant angular frequency o and the " sub-harmonic" frequency o/2 
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as i s  shown by Equation (47) , but that they also occur for excitation by an infinite 
number of "sub-harmonic" frequencies 0/3, 4 4 ,  4 5  . . . . . . .etc. 
response in the first mode due to these higher "sub-harmonic" forcing frequencies i s  only 
appreciable for large amplitude shock oscillations; the response in the higher modes to 
the higher "sub-harmonic" frequencies becomes appreciable for much smaller amplitude 
shock osci I lations . 

However, the 

35 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

1 

I 

1 

I 

- --. 

APPENDIX C 

FORMULATION OF PANEL RESPONSE THEORY FOR PANELS WITH CLAMPED- 
CLAMPED EDGES 

I t  i s  not possible i n  the case of a panel with clamped-clamped edges to write down a 
mathematical expression for the mode shape which exactly satisfies a l l  the boundary 
conditions. However, a good engineering approximation i s  given by: 

x x  .. . 
m n  

lXml  Ixn I 
f (xry) = f k r y )  = 
r mn 

b 

C I Y  an Y n 
cosh-+ B sinh- + C cos -+ D 

b 

a- Y 

b 

I I  

n b n n 

(C.1) 

I'm1 , lXnl 
where X X are the mode shapes in  the x-and y-directions and 

m n 
are their maximum values respectively; and A , 6 , C , D , A , 6 , C , and D 

m m m m n n n  n 
are modal coefficients which are determined by the boundary conditions of the panel. 
Applying the boundary conditions for a clamped-clamped panel, that i s  that for X and 

m 

n 
ax ax 

a x  aY 

m 
x = - =  x = - -  - 0, for x = a  and y = b and for x = y  = 0, 

m n 'n 

respectively. 

A = -C 

B = -D 
0 = A c o s h a  + B s i n h a  + Ccosa  + D s i n a  

0 = Asinh CI + B cosh a - C sin a + D cos a 

A Equations (C.2) may be solved i n  order to obtain the frequency equation for a clamped- 
clamped pane I : 
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cosh a cos a = 1 
n m 

cosh a cos a = 1 
n n 

The mode shape fr (x,y) defined 1 equal >n (C . 1 ) above i s  use( i n  equation (4) and 

wherever else required instead of sin .E.Y s i n y  , i f  analysis i s  required for a a 
clamped-clamped panel instead of a simply supported panel. The other parameters 
required are discussed below and the necessary parameters which were calculated in 
Reference 15 are giver! in Table 1 . 
The natural resonant angular frequencies, which for a simply-supported panel are given 
by equation (28), are given for a clamped-clamped panel by: 

where 

where 9 

Reference 15 and given in  Table 1 below. 

are resonant frequency parameters which are defined and evaluated i n  m' 'n 

The generalized mass, which for a simply+uppOrted panel i s  given by equation (29), i s  
given for a clamped-clamped panel by: 

= M M ( p h a b )  
mn m n  

M 

where 

m dY 

Although the modal constants, frequency parameters and generalized mass have been 
calculated for a clamped-clamped beam for the first few modes and are presented in 
several references (for example the first five modes are given i n  Reference 19), these 
parameters are required for at least the first nine or ten modes for the analysis of panel 
response. Thus, these parameters were calculated in Reference 15, and are presented 

. here i n  Table 1. 
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i t  should be noted that the modal coefficients: C = - A C = - A and 

B = - D = - 1 .  More significant figures are given in Table 1 above where 

they are required for accurate calculations. 

m m' n n 

m n 
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LOGIC FOR THE DIGITAL COMPUTER PROGRAM 

Equation (47) may be written as amplification factor A for the first mode (by dividing by 
the f i r s t  term of Equation (31) and puttingm = 1): 

6 2a 6 '7 sin 2 = + (1 +-) cos 

+ 
W 

+ asin n&in nR - J1a ) 

2[L2 + (1 +-) W 

1-6 '3 1 -6 

2a 

+ 

where b = D/a, fi = H/a, and ;= a t  

Putting a/w = 0 and neglecting second order terms in  6, since 6 i s  small gives: 
I 

8L + (1-2p)L 6L + (1 + 2pf  I 

The computer program was written to compute Equation (D2) as time avaried beLeen 
0 and 2n. The maximum and minimum values of A where chosen for each case under 
consideration. The parameters which were varied and the values assigned are given below: 



I 6 = 0.005, 0.010 and 0.020; 
= 0.0, 0.1 , 0 . 2 ,  0 . 3 ,  0 . 4 ,  and0.5 ; 
= 0 . 0 ,  0.1 , 0.2, 0 . 3 ,  0 . 4 ,  and0.5 ; 

, 

, = 1.050,1.020, 1.010, 1.005, 1.002,1.001, 1.000, 0.999, 0.998, 
0.980, 0.950, 0.525, 0.510, 0.505, 0.5025, 3.5010, 0.5005, 0 
0.4990, 0.4975, 0.4950, 0.4900, 0.4750. 

0.995, 0.990, 
5000, 0.4995, 

1 

I The flow chart which was used to calculate the values of maximum A for these cases 
i s  given in Figure D1 following. Figure D2 givcs the listing of the computer program 

I which WQS written - 
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Ca I cu la te 1814-8261 
Write (-1 

Start 0 

0 e, KK = 1 ,+ 
f 

A K K  = K K + l  

n 
72 

l y = o + -  

Find Maximum 
And Minimum 
Values of AMP. 

t 

9 
H = H + 0.1 

f 

yes I 

Figure D1. Flow Chart to Solve Computer Program 
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I -  
I 
I 
I 

, 

I 
I 
I 
1 
c 
I 

Q 
K = K + 1  

J = 6? J = J + 1  

T = I + 1  

I !I 
'i 

Figure D1. (Continued) 
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I 

Figure D2. Corrputer Frogram 
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